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CIRCULANT GRAPHS AND

GCD AND LCM OF SUBSETS

JOACHIM VON ZUR GATHEN AND IGOR E. SHPARLINSKI

Abstract. Given two sets A and B of integers, we consider the
problem of finding a set S ⊆ A of the smallest possible cardinal-
ity such the greatest common divisor of the elements of S ∪ B

equals that of those of A ∪ B. The particular cases of B = ∅ and
#B = 1 are of special interest and have some links with graph
theory. We also consider the corresponding question for the least
common multiple of the elements. We establish NP-completeness
and approximation results for these problems by relating them to
the Minimum Cover Problem.

1. Introduction

1.1. Description of the problem and motivation. For a set A of
integers, gcd(A) and lcm(A) denote the greatest common divisor (gcd)
and the least common multiple (lcm) of the elements of A, respectively.
We consider some questions of how gcd and lcm behave on various
subsets S of the original set A.
We are interested in both designing algorithms to construct such sets

S with prescribed properties of gcd(S) and lcm(S) and also in upper
and lower bounds on what one can possibly achieve.
We consider the question of finding a subset S ⊆ A of the small-

est possible cardinality with minimal gcd, namely, gcd(S) = gcd(A),
or with maximal lcm, namely, lcm(S) = lcm(A). We also consider a
modification of this question where we impose that a specific set B
of integers be contained in S. This B may contain elements of A.
This question arises in the theory of circulant graphs and is a spe-
cial case of graph editing problems , see [Damaschke & Molokov, 2012],
[Golovachy, 2013], [Mathieson, 2010] and [Mathieson & Szeider, 2012]
for the background and further references.
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To explain this connection we recall that an (undirected) circulant

graph G(A,m) on m nodes, labelled 0, 1, . . . , m− 1, is defined by a set
A of integers called links , where the nodes i and j are connected if and
only if |i−j| ≡ a mod m for some a ∈ A. Clearly, G(A,m) is connected
if and only if gcd (A ∪ {m}) = 1. Thus it is natural to ask how many
links can at most be removed from A so that the new circulant graph
is still connected. This leads to the above question with B = {m}.
The above can be generalized as follows:

Question 1. Given two sets A and B of positive integers, find a subset
S ⊆ A of the smallest possible size with gcd(S ∪ B) = gcd(A ∪ B).

Similarly, we also ask:

Question 2. Given two sets A and B of positive integers, find a subset
S ⊆ A of the smallest possible size with lcm(S ∪B) = lcm(A ∪ B).

We first formalize these questions as decision problems.

Problem 3. Minimum subset with minimal gcd, MinGcd

Input: Sets A and B of positive integers, positive integer k.
Question: Does A contain a subset S with #S ≤ k and gcd(S ∪
B) = gcd(A ∪ B)?

Problem 4. Minimum subset with maximal lcm, MaxLcm

Input: Sets A and B of positive integers, positive integer k.
Question: Does A contain a subset S with #S ≤ k and lcm(S ∪
B) = lcm(A ∪ B)?

The input size of an instance (A,B) for bothMinGcd andMaxLcm

is naturally defined as

I(A,B) =
∑

a∈A∪B

⌈log(a+ 1)⌉

where log z denotes the binary logarithm of z ≥ 1.
For each of these (and other similar) problemsX, we denote asOPT-

X the corresponding optimization problem, where one has to find sub-
sets as described with minimal k.

1.2. Main Results. We can now formulate our main results.

Theorem 5. MinGcd and MaxLcm are NP-complete.

Furthermore, a combination of the classical greedy approximation
algorithm of [Johnson, 1974, Theorem 4] and known inapproximabil-
ity results, see, for example, [Alon & Moshkovitz & Safra, 2006, The-
orem 7], yield the following.



CIRCULANT GRAPHS AND GCD AND LCM OF SUBSETS 3

Theorem 6. OPT-MinGcd and OPT-MaxLcm can be approxi-

mated in polynomial time within a factor O(log I(A,B)), but not within
a factor o(log I(A,B)) if P 6= NP.

2. Reductions Between Various Problems

2.1. Reduction to B = ∅. We start by constructing from A,B ⊆ Z
a set AB ⊆ Z so that

OPT-MinGcd(A,B) = OPT-MinGcd(AB,∅).

This reduces the general case to the special situation where B = ∅.
Moreover, given a minimum solution set S for one of the two problems,
one can easily find a solution for the other one.
For any integer a, we define the nonnegative integer

aB = gcd({a} ∪B),

and apply this element-wise to any S ⊆ Z:

SB = {aB : a ∈ S}.

We claim that for any S ⊆ A we have

gcd(S ∪B) = gcd(SB).(1)

For any c ∈ Z, we have

c | gcd(S ∪ B) ⇐⇒ ∀a ∈ S ∀b ∈ B c | a and c | b

⇐⇒ (∀a ∈ S c | a) and c | gcd(B)

⇐⇒ ∀a ∈ S c | aB ⇐⇒ c | gcd(SB).

In particular, we have gcd(A ∪ B) = gcd(AB).
Distinct a ∈ A may yield the same aB. However, if S ⊆ A has

minimal size with gcd(S ∪ B) = gcd(A ∪ B), then a 7→ aB is injective
on S, and #S = #SB. Thus

OPT-MinGcd(A,B) ≥ OPT-MinGcd(AB,∅).

For the reverse direction, we take a section σ of a 7→ aB on A, so
that σ(b) ∈ A and (σ(b))B = b for b ∈ AB. For any T ⊆ AB of minimal
size with gcd(T ) = gcd(AB), we claim that

gcd(σ(T ) ∪ B) = gcd(A ∪B).

This follows from (1), since (σ(T ))B = T and

gcd(A ∪ B) = gcd(AB) = gcd(T ) = gcd(σ(T ) ∪B).

We have #σ(T ) ≤ #T and gcd((σ(T ))B) = gcd(AB). The minimal-
ity of #T implies that #σ(T ) = #T and thus

OPT-MinGcd(A,B) ≤ OPT-MinGcd(AB,∅).
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Overall, it follows that the minimal solution sizes for (A,B) and AB

are equal, and that the solution sets are related by the above corre-
spondence. Clearly the set AB can be constructed in time polynomial
in I(A,B). Thus both the decision and the optimization versions of
the general and the special cases are polynomial-time equivalent.
So from now on we assume that the input consists of one set A and

denote by I(A) = I(A, ∅) the input size.

2.2. Minimum Cover Problem. We present polynomial time reduc-
tions between MinGcd, MaxLcm and the following problem, which
is well studied in complexity theory.

Problem 7. Minimum cover, MinCover

Input: List C of subsets of a finite set X , positive integer k.
Question: Does C contain a cover for X of size k or less, that
is, a subset D ⊆ C with #D ≤ k such that every element of X
belongs to at least one member of D?

Furthermore, let n be the input size, usually about #C · logm if
X = {1, . . . , m}. Then OPT-MinCover can be approximated in
polynomial time within a factor of O(logn), but no smaller factor (un-
less P = NP ), see [Alon & Moshkovitz & Safra, 2006].
It is well known that MinCover is NP-complete, see, for exam-

ple, [Garey & Johnson, 1979, Problem SP5, Section A.3.1]. In the
next subsections, we present various reductions between MinCover

and our problems. The latter are trivially in NP, and their reduc-
tion to MinCover transfers approximation algorithms for the latter
to approximation algorithms for our problems. On the other hand,
the reductions from MinCover to our problems show that the latter
cannot be approximated too well.

2.3. Reduction from MaxLcm to MinCover. Let us take an in-
stance (A, k) of MaxLcm. We compute a coprime basis (B, e) of A,
where B consists of pairwise coprime integers b ≥ 2 and e : A×B −→ N
is such that a =

∏
b∈B be(a,b) for all a ∈ A. By dropping the unneeded

elements b where e(a, b) = 0 for all a ∈ A from B, we may assume that

(2) ∀b ∈ B ∃ a ∈ A : e(a, b) ≥ 1.

We recall that [Bach & Shallit, 1996, Section 4.8] discuss coprime bases
(under the designation of gcd-free basis) and show that one can be com-
puted with O(I(A)2) bit operations, where, as before, I(A) is the input
size. They use classical arithmetic. According to [Bernstein, 2005], fast
arithmetic yields an algorithm using I(A)(log I(A))O(1) operations.
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By the above, the size of B is polynomial in that of A. We note
that the size of B can actually be much smaller than that of A: Take
the first m primes, all exponent vectors e in {1, 2}m, and then all 2m

values ae =
∏

1≤i≤m peii . Then the coprime basis B consists of just
these m primes and size(A) is only logarithmic in size(B). That is no
worry, since we only use this reduction to derive good approximations
for MinCover (which do not exist by the hardness result mentioned
above) from good approximations to our problems; hence the latter do
not exist either.
For b ∈ B, we let d(b) = max{e(a, b) : a ∈ A}. Thus d(b) ≥ 1

by (2), and lcm(A) =
∏

b∈B bd(b); see also [Bach & Shallit, 1996, Corol-
lary 4.8.2]. For a ∈ A, we set

Ca = {b ∈ B : e(a, b) = d(b)}.

We now take a subset E ⊆ A such that {Ca : a ∈ A} = {Ca : a ∈ E}
and the Ca in the latter set are pairwise distinct. Clearly this can be
done in time polynomial in I(A). It is also clear that lcm(E) = lcm(A).
Now we consider the MinCover instance with X = B and C =

{Ca : a ∈ E}. For S ⊆ E, we consider D = {Ca : a ∈ S}. Then
#D = #S, and

lcm(S) = lcm(E) = lcm(A) ⇐⇒ ∀b ∈ B bd(b) | lcm(S)

⇐⇒ ∀b ∈ B ∃a ∈ S bd(b) | a

⇐⇒ ∀b ∈ B ∃a ∈ S e(a, b) = d(b)

⇐⇒ ∀b ∈ B = X ∃a ∈ S b ∈ Ca

⇐⇒ D covers X.

Thus a solution S of MaxLcm with #S ≤ k implies one of MinCover

with #D ≤ k.
Conversely, given a cover D = {Ca : a ∈ S} of X with #D ≤ k we

conclude that #S ≤ k, since the sets Ca for a ∈ E are pairwise distinct.
Thus the size of the smallest set S ⊆ A with lcm(S) = lcm(A) and

the size of the smallest cover D of X coincide. This concludes the
reduction.

2.4. Reduction from MinGcd to MinCover. We replace d(b) in
the previous reduction by g(b) = min{e(a, b) : a ∈ A}. Then

gcd(A) =
∏

b∈B

bg(b).
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We see that gcd(E) = gcd(A) divides gcd(S) and in the argument for
gcd(E) = gcd(S), a divisibility bd(b) | u has to be replaced by bg(b)+1 ∤ u.
Otherwise the argument goes through unchanged.

2.5. Reduction from MinCover to MaxLcm. We are given a list
C of sets C1, . . . , Cl ⊆ X , where X = {1, . . . , m}, and k ≥ 1. We
may assume that X =

⋃
i≤l Ci and k ≤ l, otherwise the MinCover

problem is trivial. We let p1 < p2 < · · · < pm be the first m prime
numbers, a =

∏
j∈X pj ,

ai =
∏

j∈Ci

pj ,

for i ≤ l and A = {a1, . . . , al}. Thus a = lcm(A). We use the same
value of k for both problems. Since pm ≤ (1+ o(1))m lnm as m → ∞,
the bit size of (A, k) is in O(lm logm). The set A can be computed in
time polynomial in lm, using the sieve of Eratosthenes for generating
the primes.
Suppose that I ⊆ {1, . . . , m} is such that #I ≤ k and lcm(S) =

lcm(A), where S = {ai : i ∈ I}. Let

D = {Ci : i ∈ I}.

Then #D ≤ k. Furthermore, for any j ∈ X , pj divides lcm(A) =
lcm(S) and hence ai for some i ∈ I. It follows that j ∈ Ci ∈ D. Thus
D covers X .
On the other hand, suppose that I ⊆ {1, . . . , m} is such that #I ≤ k

and D = {Ci : i ∈ I} covers X . Then S = {ai : i ∈ I} satisfies #S ≤ k
and lcm(S) = a = lcm(A).

2.6. Reduction from MinCover to MinGcd. For an analogous re-
duction to MinGcd, we replace ai by a/pi in the above.

3. Proofs of Main Results

We start with the upper bounds claimed in Theorems 5 and 6. The
fact that MaxLcm and MinGcd are NP-complete is trivial. Fur-
thermore, the reductions of Sections 2.3 and 2.4 show that the know
approximation algorithms for MinCover also yield ones for our prob-
lems.
Furthermore, our claimed lower bounds (NP-hardness and inapprox-

imability) follow from the reductions in Sections 2.5 and 2.6 from our
problems to MinCover, together with the NP-hardness and inapprox-
imability of MinCover, as cited above.
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